题目内容
【题目】已知:如图,在四边形ABCD中,AB=CD,AD=BC,点E在CD上,连接AE并延长,交BC的延长线于F.
(1)求证:△ADE∽△FCE;
(2)若AB=4,AD=6,CF=2,求DE的长.
【答案】(1)见解析;(2)DE=3
【解析】
(1)根据已知条件得到四边形ABCD是平行四边形,根据AD∥BC证得∠DAE=∠F,∠D=∠DCF即可得到结论;
(2)根据(1)的△ADE∽△FCE列式即可求出答案.
(1)证明:∵ 四边形ABCD中,AB=CD,AD=BC,
∴ 四边形ABCD是平行四边形.
∴ AD∥BC.
∴ ∠DAE=∠F,∠D=∠DCF.
∴ △ADE∽△FCE.
(2)解:∵四边形ABCD是平行四边形,且AB=4,
∴AB=CD=4.
又∵△ADE∽△FCE,
∴
∵AD=6,CF=2,
∴
∴DE=3.

练习册系列答案
相关题目