题目内容
【题目】某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少15个.该小组共有多少人?计划做多少个“中国结”?
根据题意,小明、小红分别列出了尚不完整的方程如下:
小明:5x□( )=4x□( ); 小红: .
(1)根据小明、小红所列的方程,其中“□”中是运算符号,“( )”中是数字,请你分别指出未知数x、y表示的意义.
小明所列的方程中x表示 ,
小红所列的方程中y表示 ;
(2)请选择小明、小红中任意一种方法,完整的解答该题目.
【答案】(1)该小组的人数;计划做的“中国结”个数;(2)选择小明,该小组共有24人,计划做111个“中国结”; 选择小红,该小组共有24人,计划做111个“中国结”.
【解析】
(1)小明利用计划做的“中国结”个数不变列的方程,小红根据人数不变列的方程,结合二者的方程,即可得出x、y表示的意义;
(2)选择小明:设该小组共有x个人,根据计划做的“中国结”个数不变,即可得出关于x的一元一次方程,解之即可得出结论;选择小红:设计划做y个“中国结”,根据该小组的人数不变,即可得出关于y的分式方程,解之经检验即可得出结论.
解:(1)小明所列的方程中x表示:该小组的人数;
小红所列的方程中y表示:计划做的“中国结”个数.
故答案为:该小组的人数;计划做的“中国结”个数.
(2)选择小明:设该小组共有x个人,
根据题意得:5x﹣9=4x+15,
解得:x=24,
∴5x﹣9=111.
答:该小组共有24人,计划做111个“中国结”.
选择小红:设计划做y个“中国结”,
根据题意得:=,
解得:y=111,
经检验,y=111是原方程的解,且符合题意,
∴==24.
答:该小组共有24人,计划做111个“中国结”.
【题目】为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表
购买服装的套数 | 1套至45套 | 46套至90套 | 91套以上 |
每套服装的价格 | 60元 | 50元 | 40元 |
(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?
(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.