题目内容
【题目】阅读下列材料,然后解答后面的问题.
(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.
(2)性质探究:请完成凹四边形一个性质的证明.
已知:如图2,四边形ABCD是凹四边形.
求证:∠BCD=∠B+∠A+∠D.
(3)性质应用:
如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,∠AEC=102°,则∠B=_____°.
【答案】64
【解析】
(2)延长BC交AD于点M,根据三角形的外角的性质即可解决问题.
(3)利用(2)中结论如图3中,设∠B=x,∠ECB=∠ECD=α,∠EAD=∠EAB=β,列出方程组即可解决问题.
(2)延长BC交AD于点M
∵∠BCD是△CDM的外角,
∴∠BCD=∠CMD+∠D,
同理∠CD是△ABM的外角,
∴∠CMD=∠A+∠B,
∴∠BCD=∠A+∠B+∠D;
(3)如图3中,设∠B=x,∠ECB=∠ECD=α,∠EAD=∠EAB=β.
由(2)可知, ,
解得x=64°
故答案为64.
练习册系列答案
相关题目