题目内容
【题目】如图,AB是⊙O的直径,PA是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)若AB=4,∠ABP=60°,求PB的长;
(2)若CD是⊙O的切线.求证:D是AP的中点.
【答案】(1)PB=8;(2)详见解析.
【解析】
(1)如图1,利用切线的性质得∠BAP=90°,然后根据含30度的直角三角形三边的关系求PB的长;
(2)连接OC、AC,如图2,根据切线的性质得出∠2+∠4=90°,∠1+∠3=90°,利用等腰三角形的性质可证明
∠3=∠4,那么∠1=∠2,CD=AD.根据圆周角定理得∠ACB=90°,再证明∠5=∠P,那么CD=DP,即D是AP的中点.
(1)解:如图1.
∵PA是⊙O的切线,AB是直径,
∴PA⊥AB,
∴∠BAP=90°,
∴∠P+∠ABP=90°,
∵∠ABP=60°,
∴∠P=30°,
又∵AB=4,
∴PB=2AB=2×4=8.
(2)证明:连接OC、AC,如图2,
∵PA是⊙O的切线,CD是⊙O的切线,
∴∠2+∠4=90°,∠1+∠3=90°,
∵OA=OC,
∴∠3=∠4,
∴∠1=∠2,
∴CD=AD.
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠1+∠5=90°,∠2+∠P=90°,
∵∠1=∠2,
∴∠5=∠P,
∴CD=DP,
∴CD=AD=DP,
∴D是AP的中点.
练习册系列答案
相关题目