题目内容
【题目】如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为 的中点.
(1)求证:AB=BC;
(2)求证:四边形BOCD是菱形.
【答案】
(1)证明:∵AB是⊙O的切线,
∴OB⊥AB,
∵∠A=30°,
∴∠AOB=60°,
∵OB=OC,
∴∠OCB=∠OBC= ∠AOB=30°,
∴∠A=∠OCB,
∴AB=BC
(2)证明:连接OD,
∵∠AOB=60°,
∴∠BOC=120°,
∵D为 的中点,
∴ = ,∠BOD=∠COD=60°,
∵OB=OD=OC,
∴△BOD与△COD是等边三角形,
∴OB=BD=OC=CD,
∴四边形BOCD是菱形.
【解析】(1)由AB是⊙O的切线,∠A=30°,易求得∠OCB的度数,继而可得∠A=∠OCB=30°,又由等角对等边,证得AB=BC;(2)首先连接OD,易证得△BOD与△COD是等边三角形,可得OB=BD=OC=CD,即可证得四边形BOCD是菱形.
练习册系列答案
相关题目
【题目】甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:
根据以上信息,整理分析数据如下:
平均成绩(环) | 中位数(环) | 众数(环) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?
【题目】如图是一个在平面直角坐标系中从原点开始的回形图,其中回形通道的宽和OA的长都是1.
(1)观察图形填写表格:
点 | 坐标 | 所在象限或坐标轴 |
A | ||
B | ||
C | ||
D | ||
E | ||
F |
(2)在图上将回形图继续画下去(至少再画出4个拐点);
(3)说出回形图中位于第一象限的拐点的横坐标与纵坐标之间的关系;