题目内容

如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,B1C1交AC于点D,如果AD=2,则△ABC的周长等于
      
3+
6+2
根据已知可以得出∠BAC=60°,而将△ABC绕点A按逆时针方向旋转15°,可知∠B1AD=45°,可以求出AB1=2,
而AB与AB1是相等的,故可求AB,那么BC和AC可求,则△ABC的周长可求.
解答:解:在Rt△ABC中,∠ABC=90°,∠ACB=30°,
则∠BAC=60°,
将△ABC绕点A按逆时针方向旋转15°后,∠B1AD=45°,
而∠AB1D=90°,故△AB1D是等腰直角三角形,
如果AD=2,则根据勾股定理得,
AB1=2那么AB=AB1=2,
AC=2AB=4,
BC=2
△ABC的周长为:AB+BC+AC=2+4+2=6+2
故本题答案为:6+2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网