题目内容

如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是           cm.
.

试题分析:易证△AOD是等腰直角三角形.则圆心O到弦AD的距离等于AD,所以可先求AD的长.
试题解析:以BC上一点O为圆心的圆经过A、D两点,则OA=OD,△AOD是等腰直角三角形.
易证△ABO≌△OCD,则OB=CD=4cm.
在直角△ABO中,根据勾股定理得到OA2=20;
在等腰直角△OAD中,过圆心O作弦AD的垂线OP.
则OP=OA•sin45°=cm.
考点: 1.垂径定理;2.全等三角形的性质;3.勾股定理;4.特殊角的三角函数值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网