题目内容
计算:2﹣1﹣=_____
六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元/个和4元/个,则该幼儿园购买了甲、乙两种玩具分别为________个、________个.
先阅读理解下面的例题,再按要求解答下列问题:
解方程()2﹣6()+5=0
【解析】令=y,代入原方程后,得:
y2﹣6y+5=0
(y﹣5)(y﹣1)=0
解得:y1=5 y2=1
∵=y
∴=5或=1
①当=1时,方程可变为:
x=5(x﹣1)
解得x=
②当=1时,方程可变为:
x=x﹣1
此时,方程无解
检验:将x=代入原方程,
最简公分母不为0,且方程左边=右面
∴x=是原方程的根
综上所述:原方程的根为:x=
根据以上材料,解关于x的方程x2++x+=0.
如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.
如图,已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是CB延长线上一点,且∠DEC=∠DCE,F是AC上一点且DF∥BC,若∠A=60°.
求证:EB=AD.
在平面直角坐标系中,设点A(0,4)、B(3,8).若点P(x,0),使得∠APB最大,则x=( )
A. 3 B. 0 C. 4 D.
有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( )
A. 5个 B. 4个 C. 3个 D. 2个
如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为( )米.(参考数据:≈1.7,tan35°≈0.7)
A. 23.1 B. 21.9 C. 27.5 D. 30
计算:
(1)(a2)3·(a2)4÷(a2)5;
(2)(x-y+9)(x+y-9);
(3)[(3x+4y)2-3x(3x+4y)]÷(-4y).