题目内容
【题目】如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(不与点A重合).BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(发现)
(1)∵AM∥BN,∴∠ACB=_______;(填相等的角)
(2)求∠ABN、∠CBD的度数;
解:∵AM∥BN,
∴∠ABN+∠A=180°,
∵∠A=60°,
∴∠ABN=∠ABP+∠PBN=______,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=______,
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP=______.
(操作)
(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
【答案】(1) ;(2)120°,,60°;(3)不变,,理由见解析.
【解析】
(1)由平行线的性质:两直线平行,内错角相等即可得;
(2)根据平行线的性质及角平分线的定义即可;
(3)由平行线的性质及角平分线的定义即可.
解:(1)∵AM∥BN,
∴∠ACB=;
故答案为:
(2)∵AM∥BN
∴∠ABN+∠A=180°,
∵∠A=60°,
∴∠ABN=120°,
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠PBD,
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP=60°.
故答案为:120°、、60°
(3)不变,,
理由:,
∴,,
∵平分,
∴,
∴
练习册系列答案
相关题目