题目内容

【题目】如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是FDC=30°,若兰兰的眼睛与地面的距离是15米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡长AB=10米,求小船C到岸边的距离CA的长?(参考数据:=173,结果保留两位有效数字)

【答案】CA的长约是94米

【解析】

试题分析:把AB和CD都整理为直角三角形的斜边,利用坡度和勾股定理易得点B和点D到水面的距离,进而利用俯角的正切值可求得CH长度CH-AE=EH即为AC长度

试题解析:过点B作BEAC于点E,延长DG交CA于点H,得RtABE和矩形BEHG

i=,AB=10

BE=8,AE=6

DG=15,BG=1,

DH=DG+GH=15+8=95,

AH=AE+EH=6+1=7

在RtCDH中,

∵∠C=FDC=30°,DH=95,tan30°=

CH=95

CH=CA+7,

即95=CA+7,

CA943594(米)

答:CA的长约是94米

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网