题目内容
【题目】如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)求证:四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF的面积.
【答案】(1)证明见解析;(2)证明见解析;(3)10.
【解析】试题分析:(1)利用AAS证明全等.(2)利用(1)中结论,先证明ADCF是平行四边形,再利用直角三角形中线性质求相邻边相等.(3)利用菱形面积公式求面积.
试题解析:
解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∠FAE=∠BDE.∵E为AD的中点,∴AE=DE,∴△AFE≌△DBE.
(2)证明:由(1)知△AEF≌△DEB,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形.∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,
∴四边形ADCF是菱形.
(3)连接DF,由(2)知AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,∴DF=AB=5,∴S菱形ADCF=AC·DF=×4×5=10.
练习册系列答案
相关题目