题目内容

已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:
①双曲线的解析式为y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5

④AC+OB=12
5
,其中正确的结论有(  )
A.1个B.2个C.3个D.4个

过点C作CF⊥x轴于点F,
∵OB•AC=160,A点的坐标为(10,0),
∴OA•CF=
1
2
OB•AC=
1
2
×160=80,菱形OABC的边长为10,
∴CF=
80
OA
=
80
10
=8,
在Rt△OCF中,
∵OC=10,CF=8,
∴OF=
OC2-CF2
=
102-82
=6,
∴C(6,8),
∵点D时线段AC的中点,
∴D点坐标为(
10+6
2
8
2
),即(8,4),
∵双曲线y=
k
x
(x>0)经过D点,
∴4=
k
8
,即k=32,
∴双曲线的解析式为:y=
32
x
(x>0),故①错误;
∵CF=8,
∴直线CB的解析式为y=8,
y=
32
x
y=8
,解得
x=4
y=8

∴E点坐标为(4,8),故②正确;
∵CF=8,OC=10,
∴sin∠COA=
CF
OC
=
8
10
=
4
5
,故③正确;
∵A(10,0),C(6,8),
∴AC=
(10-6)2+(0-8)2
=4
5

∵OB•AC=160,
∴OB=
160
AC
=
160
4
5
=8
5

∴AC+OB=4
5
+8
5
=12
5
,故④正确.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网