题目内容
【题目】在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留一丝空隙,又不互相重叠(在数学上叫做平面镶嵌).这显然与正多边形的内角大小有关,当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.
(1)请你根据图中的图形,填写表中空格:
正多边形边数 | 3 | 4 | 5 | 6 | …… | n |
正多边形每个内角度数 | 60° | 90° | 108° | 120° | …… |
(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?
【答案】(1) (2) 正三角形、正四边形(或正方形)、正六边形
【解析】
(1)利用正多边形一个内角=180-求解;
(2)进行平面镶嵌就是在同一顶点处的几个多边形的内角和应为360°,因此我们只需验证360°是不是上面所给的几个正多边形的一个内角度数的整数倍;
解:(1)由正n边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形…正n边形的每一个内角为:60°,90°,108°,120°,…;
(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;
【题目】由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批两种不同型号口罩进行销售.下表是甲、乙两人购买两种型号口罩的情况:
A型号数量(单位:个) | B型号数量(单位:个) | 总售价(单位:元) | |
甲 | 1 | 3 | 26 |
乙 | 3 | 2 | 29 |
(1)求一个型口罩和一个型口罩的售价各是多少元?
(2)药店准备购进这两种型号的口罩共50个,其中型口罩数量不少于35个,且不多于型口罩的3倍,有几种购买方案?请写出购买方案.
(3)在(2)的条件下,药店在销售完这批口罩后,总售价能否达到282元?
【题目】小龙在学校组织的社会调查活动中负贵了解他所居住的小区450户居民的家庭收入情况从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频分布直方图。
分组 | 频数 | 百分比 |
600≤<800 | 2 | 5% |
800≤<1000 | 6 | 15% |
1000≤<1200 | 45% | |
9 | 22.5% | |
1400≤<1600 | ||
1600≤<1800 | 2 | |
合计 | 40 | 100% |
根据以上提供的信息,解答下列问题
(1)补全频数分布表
(2)补全频数分布直方图
(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户