题目内容
【题目】如图,点N(0,6),点M在x轴负半轴上,ON=3OM.A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.
(1)写出点M的坐标;
(2)求直线MN的表达式;
(3)若点A的横坐标为-1,求矩形ABOC的面积.
【答案】(1)(-2,0);(2)该y=3x+6;(3) S矩形ABOC=3.
【解析】
(1)由点N(0,6),得出ON=6,再由ON=3OM,求得OM=2,得出点M的坐标;
(2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;
(3)将A点横坐标代入y=3x+6,求出纵坐标,即可表示出S矩形ABOC.
(1)∵N(0,6)
∴ON=6
∵ON=3OM
∴OM=2
∴M点坐标为(-2,0);
(2)该直线MN的表达式为y=kx+b,分别把M(-2,0),N(0,6)代入,
得 解得
∴直线MN的表达式为y=3x+6.
(3)在y=3x+6中,当x=-1时,y=3,∴OB=1,AB=3,
∴S矩形ABOC=1×3=3.
练习册系列答案
相关题目