题目内容
【题目】已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.
(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;
(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,求∠MGN+∠MPN的度数;
(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.
【答案】(1)∠AMG+∠CNG=90°;(2)∠MGN+∠MPN=90°;(3)∠AME=50°.
【解析】
(1)过G作GH∥AB,依据两直线平行,内错角相等,即可得到∠AMG+∠CNG的度数;
(2)过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,利用平行线的性质以及角平分线的定义,求得∠MGN=30°+α,∠MPN=60°-α,即可得到∠MGN+∠MPN=30°+α+60°-α=90°;
(3)过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,利用平行线的性质以及角平分线的定义,可得∠MEN=∠TEN-∠TEM=90°-y-2x,∠MGN=x+y,再根据2∠MEN+∠MGN=105°,即可得到2(90°-y-2x)+x+y=105°,求得x=25°,即可得出∠AME=2x=50°.
(1)如图1,过G作GH∥AB,
∵AB∥CD,
∴GH∥AB∥CD,
∴∠AMG=∠HGM,∠CNG=∠HGN,
∵MG⊥NG,
∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;
(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,
∵GK∥AB,AB∥CD,
∴GK∥CD,
∴∠KGN=∠GND=α,
∵GK∥AB,∠BMG=30°,
∴∠MGK=∠BMG=30°,
∵MG平分∠BMP,ND平分∠GNP,
∴∠GMP=∠BMG=30°,
∴∠BMP=60°,
∵PQ∥AB,
∴∠MPQ=∠BMP=60°,
∵ND平分∠GNP,
∴∠DNP=∠GND=α,
∵AB∥CD,
∴PQ∥CD,
∴∠QPN=∠DNP=α,
∴∠MGN=30°+α,∠MPN=60°﹣α,
∴∠MGN+∠MPN=30°+α+60°﹣α=90°;
(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,
∵AB,FG交于M,MF平分∠AME,
∴∠FME=∠FMA=∠BMG=x,
∴∠AME=2x,
∵GK∥AB,
∴∠MGK=∠BMG=x,
∵ET∥AB,
∴∠TEM=∠EMA=2x,
∵CD∥AB∥KG,
∴GK∥CD,
∴∠KGN=∠GND=y,
∴∠MGN=x+y,
∵∠CND=180°,NE平分∠CNG,
∴∠CNG=180°﹣y,∠CNE=∠CNG=90°﹣y,
∵ET∥AB∥CD,
∴ET∥CD,
∴∠TEN=∠CNE=90°﹣y,
∴∠MEN=∠TEN﹣∠TEM=90°﹣y﹣2x,∠MGN=x+y,
∵2∠MEN+∠MGN=105°,
∴2(90°﹣y﹣2x)+x+y=105°,
∴x=25°,
∴∠AME=2x=50°.