题目内容

如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B?A,B?C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.
(1)若a=4厘米,t=1秒,则PM=______厘米;
(2)若a=5厘米,求时间t,使△PNB△PAD,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.
(1)当t=1时,MB=1,NB=1,AM=4-1=3,
∵PMBN
∴△ANB△APM,
PM
NB
=
AM
AB

PM=
3
4


(2)当t=2时,使△PNB△PAD,
NB
AD
=
PN
PA

PN
PA
=
BM
AM

NB
AD
=
BM
AM
这样就可以求出t,
相似比为2:3.

(3)∵PM⊥AB,CB⊥AB,∠AMP=∠ABC,△AMP△ABN,
PM
BN
=
AM
AB
PM
t
=
a-t
a
,∵PM=
t(a-t)
a

∵PQ=3-
t(a-t)
a

当梯形PMBN与梯形PQDA的面积相等,
(QP+AD)DQ
2
=
(MP+BN)BM
2
=
(3-
t(a-t)
a
+3)(a-t)
2
=
(
t
a
(a-t)+t)t
2

化简得t=
6a
6+a

∵t≤3,
6a
6+a
≤3
,则a≤6,
∴3<a≤6.

(4)∵3<a≤6时,梯形PMBN与梯形PQDA的面积相等,
∴梯形PQCN的面积与梯形PMBN的面积相等即可,则CN=PM,
t
a
(a-t)=3-t,
两边同时乘以a,得at-t2=3a-at,
整理,得t2-2at+3a=0,
t=
6a
6+a
代入,整理得9a3-108a=0,
∵a≠0,∴9a2-108=0,
∴a=±2
3

所以a=2
3

所以,存在a,
当a=2
3
时梯形PMBN与梯形PQDA的面积、梯形PQCN的面积相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网