题目内容
【题目】某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.
(1)求A,B两种树木每棵各多少元?
(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
【答案】(1)A种树每棵100元,B种树每棵80元;(2)当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.
【解析】分析:(1)、设A种树每棵x元,B种树每棵y元,根据题意列出二元一次方程组,从而得出答案;(2)、设购买A种树木为a棵,根据题意列出y与a的函数关系式,根据a的取值范围得出最值.
详解:(1)设A种树每棵x元,B种树每棵y元,
依题意得:,解得.
答:A种树每棵100元,B种树每棵80元;
(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,则a≥3(100﹣a),
解得a≥75. 设实际付款总金额是y元,则
y=0.9[100a+80(100﹣a)],即y=18a+7200.
∵18>0,y随a的增大而增大, ∴当a=75时,y最小.
即当a=75时,y最小值=18×75+7200=8550(元).
答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元
【题目】为了解宣城市市民“绿色出行”方式的情况,我校数学兴趣小组以问卷调查的形式,随机调查了宣城市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | |||||
出行方式 | 共享单车 | 步行 | 公交车 | 的士 | 私家车 |
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有______人,其中选择类的人数有______人;
(2)在扇形统计图中,求类对应扇形圆心角的度数,并补全条形统计图;
(3)宣城市约有人口280万人,若将、、这三类出行方式均视为“绿色出行”方式,请估计我市“绿色出行”方式的人数.