题目内容

【题目】如图,直线 与直线 相交于点P(1,b)

(1)求b,m的值
(2)垂直于x轴的直线 与直线 分别相交于C,D,若线段CD长为2,求a的值

【答案】
(1)

解:把点P(1,b)代入y=2x+1,得b=2+1=3,

把点P(1,3)代入y=mx+4,得m+4=3,

∴m=-1.


(2)

解:直线x=a与直线l1的交点C为(a,2a+1),与直线l2的交点D为(a,-a+4).

∵CD=2,

∴|2a+1-(-a+4)|=2,

即|3a-3|=2,

∴3a-3=2或3a-3=-2,

∴a=或a=.


【解析】(1)把点P(1,b)分别代入l1和l2,得到b和m的值.
(2)将直线x=a分别与直线l1、l2联立求出C和D的坐标,根据CD=2,列出关于a的方程求出a的值即可.
【考点精析】本题主要考查了确定一次函数的表达式的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网