题目内容
【题目】如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则CF:AB的值为 .
【答案】2:3
【解析】解:连接CC′,
∵将△ABE沿AE折叠,使点B落在AC上的点B′处,
又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.
∴EC=EC′,
∴∠1=∠2,
∵∠3=∠2,
∴∠1=∠3,
在△CC′B′与△CC′D中, ,
∴△CC′B′≌△CC′D,
∴CB′=CD,
又∵AB′=AB,
∴AB′=CB′,
∴B′是对角线AC中点,
即AC=2AB,
∴∠ACB=30°,
∴∠BAC=60°,∠ACC′=∠DCC′=30°,
∴∠DC′C=∠1=60°,
∴∠DC′F=∠FC′C=30°,
∴C′F=CF=2DF,
∴CD=AB=3DF,
∴CF:AB=2:3,
所以答案是:2:3.
【考点精析】掌握矩形的性质和翻折变换(折叠问题)是解答本题的根本,需要知道矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
练习册系列答案
相关题目