题目内容

【题目】定义:在平面直角坐标系中,图形G上点P的纵坐标与其横坐标的差称为P点的“坐标差”,记作Zp,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.

1)①点A31)的“坐标差”为

②求抛物线的“特征值”;

2)某二次函数的“特征值”为,点B与点C分别是此二次函数的图象与轴和轴的交点,且点B与点C的“坐标差”相等.

①直接写出 ;(用含的式子表示)

②求此二次函数的表达式.

【答案】(1)①;②抛物线的“特征值”为4;(2)①;②

【解析】

(1)①由“坐标差”的定义可求出点A(3,1)的“坐标差”;

②用y-x可找出y-x关于x的函数关系式,再利用配方法即可求出y-x的最大值,进而可得出抛物线y=-x +5x的“特征值”;

(2)①利用二次函数图象上点的坐标特征可求出点C的坐标,由“坐标差”的定义结合点B与点C的“坐标差"相等,即可求出m的值;

②由点B的坐标利用待定系数法可找出b,c之间的关系,找出y-x关于x的函数关系式,再利用二次函数的性质结合二次函数y=-x +bx+c(c≠0)的“特征值"为-1,即可得出关于b的一元二次方程,解之即可得出b的值,进而可得出c的值,此问得解;

解:(1)①

∴当时,y-x取得最大值,最大值为4.

∴抛物线的“特征值”为4.

(2)①-c

②由①可知:点B的坐标为

将点B代入,得:

(舍去).

∵二次函数的“特征值”为

的最大值为

解得:

∴二次函数的解析式为

练习册系列答案
相关题目

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网