题目内容
【题目】如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.
(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长;
(2)如图2,当折痕的另一端F在AD边上且BG=10时,
①求证:△EFG是等腰三角形;②求AF的长;
(3)如图3,当折痕的另一端F在AD边上,B点的对应点E到AD的距离是4,且BG=5时,求AF的长.
【答案】(1)AF=3;(2)①见解析;②AF=6;(3)AF=1
【解析】
(1)根据翻折的性质可得BF=EF,然后用AF表示出EF,在Rt△AEF中,利用勾股定理列出方程求解即可;
(2)①根据翻折的性质可得∠BGF=∠EGF,再根据两直线平行,内错角相等可得∠BGF=∠EFG,从而得到∠EGF=∠EFG,再根据等角对等边证明即可;
②根据翻折的性质可得EG=BG,HE=AB,FH=AF,然后在Rt△EFH中,利用勾股定理列式计算即可得解;
(3)设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,然后求出EM、EN,在Rt△ENG中,利用勾股定理列式求出GN,再根据△GEN和△EKM相似,利用相似三角形对应边成比例列式求出EK、KM,再求出KH,然后根据△FKH和△EKM相似,利用相似三角形对应边成比例列式求解即可.
(1)解:∵纸片折叠后顶点B落在边AD上的E点处,
∴BF=EF,
∵AB=8,
∴EF=8﹣AF,
在Rt△AEF中,AE2+AF2=EF2,
即42+AF2=(8﹣AF)2,
解得AF=3;
(2)①证明:∵纸片折叠后顶点B落在边AD上的E点处,
∴∠BGF=∠EGF,
∵长方形纸片ABCD的边AD∥BC,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG,
∴△EFG是等腰三角形;
②解:∵纸片折叠后顶点B落在边AD上的E点处,
∴EG=BG=10,HE=AB=8,FH=AF,
∴EF=EG=10,
在Rt△EFH中,FH==6,
∴AF=FH=6;
(3)解:如图3,设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,
∵E到AD的距离为4,
∴EM=4,EN=8﹣4=4,
在Rt△ENG中,EG=BG=5,
∴GN==3,
∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,
∠GEN+∠NGE=180°﹣90°=90°,
∴∠KEM=∠NGE,
又∵∠ENG=∠KME=90°,
∴△GEN∽△EKM,
∴,
即,
解得EK=,KM=,
∴KH=EH﹣EK=8﹣=,
∵∠FKH=∠EKM,∠H=∠EMK=90°,
∴△FKH∽△EKM,
∴,
即,
解得FH=1,
∴AF=FH=1.
【题目】学校冬季趣味运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:
甲组 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙组 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲组成绩的中位数是 分,乙组成绩的众数是 分.
(2)计算乙组的平均成绩和方差.
(3)已知甲组成绩的方差是1.4,则选择 组代表八(5)班参加学校比赛.