题目内容
【题目】阅读下面材料,并解答问题.
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵对应任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.
解答:
(1)将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.
(2)试说明的最小值为8.
【答案】(1) =x2+7+ (2) 见解析
【解析】试题分析: (1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;
(2)原式分子变形后,利用不等式的性质求出最小值即可.
试题解析:
(1)设﹣x4﹣6x+8=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,
可得 ,
解得:a=7,b=1,
则原式=x2+7+;
(2)由(1)可知, =x2+7+ .
∵x2≥0,∴x2+7≥7;
当x=0时,取得最小值0,
∴当x=0时,x2+7+最小值为8,
即原式的最小值为8.
练习册系列答案
相关题目