题目内容

【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时P点的坐标.

【答案】
(1)解:∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,

∴方程x2+bx+c=0的两根为x=﹣1或x=3,

∴﹣1+3=﹣b,

﹣1×3=c,

∴b=﹣2,c=﹣3,

∴二次函数解析式是y=x2﹣2x﹣3


(2)解:∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,

∴抛物线的对称轴x=1,顶点坐标(1,﹣4)


(3)解:设P的纵坐标为|yP|,

∵SPAB=8,

AB|yP|=8,

∵AB=3+1=4,

∴|yP|=4,

∴yP=±4,

把yP=4代入解析式得,4=x2﹣2x﹣3,

解得,x=1±2

把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣3,

解得,x=1,

∴点P在该抛物线上滑动到(1+2 ,4)或(1﹣2 ,4)或(1,﹣4)时,满足SPAB=8.


【解析】(1)由于抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,那么可以得到方程x2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b、c的值.(2)把抛物线的解析式化成顶点式即可;(3)根据SPAB=8,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网