题目内容

如图,水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度可忽略不计),

小明为了探究这个问题,将此情景画在了草稿纸上(如图2正视图),运动过程:木棒顶端从A点开始沿圆锥的母线下滑,速度为θ1(木棒下滑为匀速),已知木棒与水平地面的夹角为θ,θ随木棒的下滑而不断减小,θ的最大值为30°,若木棒长为2
3
,问:当木棒顶端重A滑到B这个过程中,木棒末端的速度v′2是多少?
如图,作AE⊥BE,垂足为E,
由题意知,∠AGE=30°,∠ABE=60°,
∴∠AGE=∠GAB=30°,AB=GB,AE=AGsin30°=2
3
×
1
2
=
3

AB=GB=AE÷(sin60°)=
3
÷
3
2
=2,BE=ABcos60°=1,
当木棒顶端从点A移动到点B时,且是匀速移动,用的时间为t,移动的距离为AB=2,
则木棒的底端也从点G移动到点F,用的时间也为t,移动的距离FG=FB-GB=AG-AB=2
3
-2,
∴t=
2
3
-2
v′
=
2
v

∴vˊ=(
3
-1)v.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网