题目内容

【题目】如图,在正方形ABCD中,点E在AB边上,点F在BC边的延长线上,且AE=CF
(1)求证:△AED≌△CFD;
(2)将△AED按逆时针方向至少旋转多少度才能与△CFD重合,旋转中心是什么?

【答案】
(1)解:∵四边形ABCD是正方形,

∴AD=CD,∠A=∠DCB=∠ADC=90°,

∴∠A=∠DCF=90°.

在△AED和△CFD中,

∴△AED≌△CFD(SAS)


(2)解:∵∠ADC=90°,

∴△AED按逆时针方向至少旋转90度才能与△CFD重合,旋转中心是点D


【解析】(1)由正方形的性质就可以得出AD=CD,∠A=∠DCF=90°,再由SAS就可以得出结论;(2)由∠ADC=90°就可以得出△AED按逆时针方向至少旋转90度才能与△CFD重合,旋转中心是点D.
【考点精析】根据题目的已知条件,利用正方形的性质和旋转的性质的相关知识可以得到问题的答案,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网