题目内容

【题目】如图,已知反比例函数y= (x>0)的图象与一次函 数y=﹣x+b的图象分别交于A(1,3)、B两点.

(1)求m、b的值;
(2)若点M是反比例函数图象上的一动点,直线MC⊥x轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2 , S=S2﹣S1 , 求S的最大值.

【答案】
(1)解:把A(1,3)的坐标分别代入y= 、y=﹣x+b,

∴m=xy=3,3=﹣1+b,

∴m=3,b=4


(2)解:由(1)知,反比例函数的解析式为y= ,一次函数的解析式为y=﹣x+4,

∵直线MC⊥x轴于C,交直线AB于点N,

∴可设点M的坐标为(x, ),点N的坐标为(x,﹣x+4),其中,x>0,

又∵MD⊥y轴于D,NE⊥y轴于E,∴四边形MDOC、NEOC都是矩形,

∴S1=x =3,S2=x(﹣x+4)=﹣x2+4x,

∴S=S2﹣S1=(﹣x2+4x)﹣3=﹣(x﹣2)2+1.其中,x>0,

∵a=﹣1<0,开口向下,

∴有最大值,

∴当x=2时,S取最大值,其最大值为1


【解析】(1)把A点的坐标代入反比例函数与一次函数的解析式,求出m,b即可;(2)设点M的坐标为(x, ),点N的坐标为(x,﹣x+4),求出四边形MDOC和MDEN的面积,代入求出S=(﹣x2+4x)﹣3,把上式化成顶点式,即可求出答案.
【考点精析】本题主要考查了确定一次函数的表达式和比例系数k的几何意义的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网