题目内容

已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:
①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为y=
20
x
(x>0);④sin∠COA=
4
5

其中正确的结论有(  )个.
A.1B.2C.3D.4

作DH⊥x轴于H,BG⊥x轴于G,如图,
∵四边形OABC为菱形,
∴菱形OABC的面积=
1
2
OB•AC=
1
2
×160=80,所以①正确;
1
2
DH•OA=菱形OABC的面积的
1
4
=
1
4
×80,
而A点的坐标为(10,0),
1
2
DH×10=
1
4
×80,
∴DH=4,
∵OB与AC互相垂直平分,
∴∠ADO=90°,DH为△OBG的中位线,
∴BG=2DH=8,
∴E点的纵坐标为8,
∵∠DOH+∠ODH=∠ODH+∠ADH=90°,
∴∠DOH=∠ADH,
∴Rt△DOHRt△ADH,
∴DH:AH=OH:DH,即DH2=OH•AH,
∵DH=4,AH=OA-OH=10-OH,
∴OH(10-OH)=16,解得OH=8或OH=2(舍去),
∴D点坐标为(8,4),
把D(8,4)代入y=
k
x
得k=4×8=32,
∴反比例函数解析式为y=
32
x
,所以③错误;
把y=8代入得
32
x
=8,解得x=4,
∴E点坐标为(4,8),所以②正确;
CM⊥x轴于M,如图,
∴CM=BG=8,
∵四边形OABC为菱形,
∴OC=OA=10,
在Rt△OCM中,CM=8,OC=10,
∴OM=
OC2-CM2
=6,
∴sin∠COM=
CM
OC
=
8
10
=
4
5

即sin∠COA=
4
5
,所以④正确.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网