题目内容

【题目】(10分)把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);

(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.

【答案】(1) BH=CK;(2) 存在,使△GKH的面积恰好等于△ABC面积的的位置,此时BH的长度为

【解析】(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;
(2)根据面积公式得出S△GHK=S四边形CKGH-S△CKH=x2-3x+9,根据△GKH的面积恰好等于△ABC面积的,代入得出方程x2-3x+9=××6×6,求出即可.

解:(1)BH与CK的数量关系:BH=CK,理由是:

连接OC,

由直角三角形斜边上中线性质得出OC=BG,

∵AC=BC,O为AB中点,∠ACB=90°,

∴∠B=∠ACG=45°,CO⊥AB,

∴∠CGB=90°=∠KGH,

∴都减去∠CGH得:∠BGH=∠CGK,

在△CGK和△BGH中

∴△CGK≌△BGH(ASA),

∴CK=BH,即BH=CK;

四边形CHGK的面积的变化情况:四边形CHGK的面积不变,始终等于四边形CQGZ的面积,即等于△ACB面积的一半,等于9;

(2)假设存在使△GKH的面积恰好等于△ABC面积的的位置.

设BH=x,由题意及(1)中结论可得,CK=BH=x,CH=CB﹣BH=6﹣x,

∴S△CHK=CH×CK=3x﹣x2

∴S△GHK=S四边形CKGH﹣S△CKH=9﹣(3x﹣x2)=x2﹣3x+9,

∵△GKH的面积恰好等于△ABC面积的

x2﹣3x+9=××6×6,

解得 (经检验,均符合题意).

∴存在使△GKH的面积恰好等于△ABC面积的的位置,此时x的值为

“点睛”本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网