题目内容
【题目】如图,梯形ABCD中,AD∥BC,∠ADC=90,AD= 2,BC= 4,.以AB为直径作⊙O,交边DC于E、F两点.
(1)求证:DE=CF.
(2)求直径AB的长.
【答案】(1)证明见解析;(2)AB=.
【解析】
(1)首先根据AD∥BC,∠ADC=90,OH⊥DC,得出AD∥OH∥BC,进而根据OA=OB得出DH=HC,然后根据垂径定理得出EH = HF,进而得出DE=CF;
(2)首先根据∠AGB =∠BCN = 90°,得出AG∥DC,然后根据AD∥BC,得出AD=CG.,进而得出BG,再根据三角函数得出AG,最后根据勾股定理得出AB.
(1)过点O作OH⊥DC,垂足为H.
∵AD∥BC,∠ADC=90,OH⊥DC,
∴∠BCN=∠OHC=∠ADC =90.
∴AD∥OH∥BC.
又∵OA=OB.
∴DH=HC.
∵OH⊥DC,OH过圆心,
∴EH = HF.
∴DH-EH =HC-HF.
即:DE=CF.
(2)过点A作AG⊥BC,垂足为点G,∠AGB = 90°,
∵∠AGB =∠BCN = 90°,
∴AG∥DC.
∵AD∥BC,
∴AD=CG.
∵AD= 2,BC= 4,
∴BG= BC-CG =2.
在Rt△AGB中,∵,
∴.
在Rt△AGB中,
∴AB=.
【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
请根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)请补全频数分布直方图;
(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?