题目内容
在△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c.若∠B=60°,a+b=3+
【答案】分析:根据∠B可以求得a、b的关系,根据a+b的值可以求a、b的值,根据a、b的值即可求△ABC的面积,已知a、b的值,根据勾股定理即可求c的值.
解答:
解:∵∠B=60°,∴∠A=30°,
∴b=
a,
∵a+b=3+
,即a+b=(
+1)a=3+
,
解得a=
,
∴b=3,
∴c=
=2
,
S△ABC=
ab=
.
点评:本题考查了勾股定理在直角三角形中的运用,考查了特殊角的三角函数值的计算,本题中根据a、b的关系式求得a、b的值是解题的关键.
解答:
∴b=
∵a+b=3+
解得a=
∴b=3,
∴c=
S△ABC=
点评:本题考查了勾股定理在直角三角形中的运用,考查了特殊角的三角函数值的计算,本题中根据a、b的关系式求得a、b的值是解题的关键.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |