题目内容

【题目】如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.
(1)求证:BC是⊙F的切线;
(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;
(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.

【答案】
(1)证明:连接EF,

∵AE平分∠BAC,

∴∠FAE=∠CAE,

∵FA=FE,

∴∠FAE=∠FEA,

∴∠FEA=∠EAC,

∴FE∥AC,

∴∠FEB=∠C=90°,即BC是⊙F的切线


(2)解:连接FD,

设⊙F的半径为r,

则r2=(r﹣1)2+22

解得,r= ,即⊙F的半径为


(3)解:AG=AD+2CD.

证明:作FR⊥AD于R,

则∠FRC=90°,又∠FEC=∠C=90°,

∴四边形RCEF是矩形,

∴EF=RC=RD+CD,

∵FR⊥AD,

∴AR=RD,

∴EF=RD+CD= AD+CD,

∴AG=2FE=AD+2CD


【解析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网