题目内容
如图,正△EFG内接于正方形ABCD,其中E,F,G分别在边AB,AD,BC上,若
=2,则
=______.

AE |
EB |
BG |
BC |

如图,作EK⊥FG,K是FG的中点,连AK、KB,易知E、K、G、B和E、K、F、A分别四点共圆
∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°.
∴三角形ABK是等边三角形
作KM⊥AB,M是AB的中点,设AB=6
则EB=
AB=2,MB=3,ME=1,MK=6sin60°=3
∴EK=
=2
;
EG=
=
;
BG=
=
.
故
=
.
故答案为
.

∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°.
∴三角形ABK是等边三角形
作KM⊥AB,M是AB的中点,设AB=6
则EB=
1 |
3 |
3 |
∴EK=
ME2+MK2 |
7 |
EG=
EK |
sin60° |
4
| ||
3 |
BG=
EG2-BE2 |
10
| ||
3 |
故
BG |
BC |
5
| ||
9 |
故答案为
5
| ||
9 |


练习册系列答案
相关题目