题目内容

【题目】如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1 , △CEF的面积为S2 , 若SABC=12,则S1﹣S2的值为

【答案】2
【解析】解:∵BE=CE, ∴BE= BC,
∵SABC=12,
∴SABE= SABC= ×12=6.
∵AD=2BD,SABC=12,
∴SBCD= SABC=4,
∵SABE﹣SBCD=(SADF+S四边形BEFD)﹣(SCEF+S四边形BEFD)=SADF﹣SCEF
即SADF﹣SCEF=SABE﹣SBCD=6﹣4=2.
所以答案是2.
【考点精析】解答此题的关键在于理解三角形的面积的相关知识,掌握三角形的面积=1/2×底×高.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网