题目内容
【题目】在某市外郊一段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时,并在离该公路100米处设置了一个监测点A,在如图所示的平面直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在A的北偏西60°方向上,点C在点A的北偏东45°方向上,另外一条高等级公路在y轴上,OA为其中一段.
(1)求点B和C的坐标.
(2)一辆汽车从点B匀速行驶到点C所用时间为15秒.请你通过计算,判断该汽车在这段限速路上是否超速?(参考数据: )
【答案】
(1)
解:在Rt△AOB中,OA=100,∠BAO=60°,
∴OB=OAtan∠BAO=100 .
Rt△AOC中,
∵∠CAO=45°,
∴OC=OA=100.
∴B(﹣100 ,0),C(100,0)
(2)
解:∵BC=BO+OC=100 +100,
∴ ≈18> ,
∴汽车在这段限速路上超速了
【解析】(1)已知OA=100m,求B、C的坐标就是求OB、OC的长度,可以转化为解直角三角形;(2)判断是否超速就是求BC的长,然后比较.
【考点精析】关于本题考查的关于方向角问题,需要了解指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角才能得出正确答案.
练习册系列答案
相关题目