题目内容
【题目】如图,E是ABCD的边CD的中点,延长AE交BC的延长线于点F.
(1)求证:△ADE≌△FCE;
(2)若AB⊥AF,BC=12,EF=6,求CD的长.
【答案】(1)见解析;(2)12 .
【解析】
(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;
(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.
:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAE=∠F,∠D=∠ECF,
∵E是ABCD的边CD的中点,
∴DE=CE,
在△ADE和△FCE中,
,
∴△ADE≌△FCE(AAS);
(2)∵△ADE≌△FCE,
∴AE=EF=6,
∵AB∥CD,
∴∠AED=∠BAF=90°,
在ABCD中,AD=BC=12,
∴DE=,
∴CD=2DE=12.
练习册系列答案
相关题目
【题目】将正整数至按照一定规律排成下表:
…… |
记表示第行第个数,如表示第行第个数是.
(1)直接写出_______________,_______________;
(2)①如果,那么_________________,________;②用,表示__________;
(3)将表格中的个阴影格子看成一个整体并平移,所覆盖的个数之和能否等于.若能,求出这个数中的最小数,若不能说明理由.