题目内容
在平面直角坐标系中,A(-4,-2),B(-2,-2),C(-1,0)
(1)将△ABC绕C点顺时针旋转90°,得△A1B1C,则点A1的坐标为______.
(2)将△A1B1C向右平移6个单位得△A2B2C2,则点B2的坐标为______.
(3)从△ABC到△A2B2C2能否看作是绕某一点作旋转变换?若能,则旋转中心坐标为______在旋转变换中AB所扫过的面积为______.
(1)将△ABC绕C点顺时针旋转90°,得△A1B1C,则点A1的坐标为______.
(2)将△A1B1C向右平移6个单位得△A2B2C2,则点B2的坐标为______.
(3)从△ABC到△A2B2C2能否看作是绕某一点作旋转变换?若能,则旋转中心坐标为______在旋转变换中AB所扫过的面积为______.
(1)取点D(-1,-2),可知A,B,D三点同一直线上,所以△ACD为直角三角形(∠ADC=90°),△ACD绕C点旋转,易知CD与x轴重合,A1D∥y轴,即A′横坐标的数值等于CD的长度加上OC的长度,纵坐标等于AD的长度,又A1位于第二象限,故A1的坐标为(-3,3).A1(-3,3);
(2)由(1)可知,B1的坐标为(-3,1),A1B1C向右平移6个单位得△B2C2,B1的横坐标向右平移6个单位,即B2的横坐标为-3+6=3,即点B2的坐标为(3,1).B2(3,1);
(3)连接AA2,CC2,易知AA2的斜率为
,其中点Q的坐标为(-
,
),所以其中垂线的方程为5y+7x+1=0,CC2的中垂线为x=2,与x=2联立,解得交点P坐标为(2,-3).易知PA=
,PQ=
,可知∠APQ=60°,即∠APA2=120°.所以S
=S扇PAA2-S△APQ.同理可求出S
,S
.即S=S
+S
+S
,经计算S=5π.
(2)由(1)可知,B1的坐标为(-3,1),A1B1C向右平移6个单位得△B2C2,B1的横坐标向右平移6个单位,即B2的横坐标为-3+6=3,即点B2的坐标为(3,1).B2(3,1);
(3)连接AA2,CC2,易知AA2的斜率为
5 |
7 |
1 |
2 |
1 |
2 |
37 |
|
AA2 |
CC2 |
BB2 |
AA2 |
CC2 |
BB2 |
练习册系列答案
相关题目