题目内容
【题目】某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案.
【答案】有两种进货方案:购进甲种25台,乙种25台购进甲种35台,丙种15台.
【解析】
用二元一次方程组解决问题的关键是找到2个合适的等量关系.在本题中可利用“两种型号电视机总数为50”和“计划拨款9万元用于购电视”这两个等量关系列方程组解答.
解:分情况计算,由其解的情况即可求得进货方案.
设甲、乙、丙型号的电视机分别为x台,y台,z台.
若选甲、乙,则有:.
若选甲、丙,则有:,解得.
若选乙、丙,则有:舍去
答:有两种进货方案:购进甲种25台,乙种25台购进甲种35台,丙种15台.
练习册系列答案
相关题目
【题目】小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/分钟 | 0<x≤5 | 5<x≤10 | 10<x≤15 | 15<x≤20 |
频数(通话次数) | 20 | 16 | 9 | 5 |
则5月份通话次数中,通话时间不超过15分钟的所占百分比是( )
A. 10% B. 40% C. 50% D. 90%