题目内容

【题目】如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF

解:∵AB∥CD,(已知)
∴∠AMN=∠DNM()
∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)
∴∠EMN=∠AMN,
∠FNM=∠DNM (角平分线的定义)
∴∠EMN=∠FNM(等量代换)
∴ME∥NF()
由此我们可以得出一个结论:
两条平行线被第三条直线所截,一对角的平分线互相

【答案】两直线平行,内错角相等;;内错角相等,两直线平行;内角;平行
【解析】此题考查平行线的性质和角平分线的定义的运用;并考查学生对证明题的条件及结论的总结.
【考点精析】本题主要考查了角的平分线和平行线的判定与性质的相关知识点,需要掌握从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网