题目内容
【题目】如图1,在平面直角坐标系中,抛物线经过点和点.
(1)求抛物线的解析式及顶点的坐标;
(2)点是抛物线上、之间的一点,过点作轴于点,轴,交抛物线于点,过点作轴于点,当矩形的周长最大时,求点的横坐标;
(3)如图2,连接、,点在线段上(不与、重合),作,交线段于点,是否存在这样点,使得为等腰三角形?若存在,求出的长;若不存在,请说明理由.
【答案】(1);;(2)点的横坐标为;(3)AN=1或.
【解析】
(1)根据和点可得抛物线的表达式为,可知对称轴为x=-2,代入解析式即可得出顶点坐标;(2)设点,则,,可得矩形的周长,即可求解;(3)由D为顶点,A、B为抛物线与x轴的交点可得AD=BD,即可证明∠DAB=∠DBA,根据,利用角的和差关系可得,即可证明,可得;分、、,三种情况分别求解即可.
(1)∵抛物线经过点和点.
∴抛物线的表达式为:,
∴对称轴为:x==-2,
把x=-2代入得:y=4,
∴顶点.
(2)设点,
则,,
矩形的周长,
∵,
∴当时,矩形周长最大,此时,点的横坐标为.
(3)∵点D为抛物线顶点,A、B为抛物线与x轴的交点,
∴AD=BD,
∴∠DAB=∠DBA,
∵,,,
∴,
∴,
∴,
∵D(-2,4),A(-5,0),B(1,0)
∴,,
①当时,
∵∠NAM=∠MBD,∠NMA=∠MBD,
∴,
∴,
∴=AB-AM=1;
②当时,则,
∵∠DMN=∠DBA,
∴∠NDM=∠DBA,
∵∠DAB是公共角,
∴,
∴,
∴,即:,
∴,
∵,即,
∴;
③当时,
∵,而,
∴,
∴;
综上所述:或.
练习册系列答案
相关题目