题目内容

【题目】如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为

【答案】16

【解析】

试题分析:根据矩形的性质得到CD=AB=x,BC=AD=y,然后利用直角BDE的斜边上的中线等于斜边的一半得到:BF=DF=EF=4,则在直角DCF中,利用勾股定理求得

x2+(y﹣4)2=DF2

解:四边形ABCD是矩形,AB=x,AD=y,

CD=AB=x,BC=AD=y,BCD=90°.

BDDE,点F是BE的中点,DF=4,

BF=DF=EF=4.

CF=4﹣BC=4﹣y.

在直角DCF中,DC2+CF2=DF2,即x2+(4﹣y)2=42=16,

x2+(y﹣4)2=x2+(4﹣y)2=16.

故答案是:16.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网