题目内容
【题目】如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.
(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.
【答案】
(1)证明:连接OD、OE,
∵AD是⊙O的切线,
∴OD⊥AB,∴∠ODA=90°,
又∵弧DE的长度为4π,
∴ ,
∴n=60,
∴△ODE是等边三角形,
∴∠ODE=60°,∴∠EDA=30°,
∴∠B=∠EDA,
∴DE∥BC.
(2)解:连接FD,
∵DE∥BC,
∴∠DEF=∠C=90°,
∴FD是⊙0的直径,
由(1)得:∠EFD= ∠EOD=30°,FD=24,
∴EF=12 ,
又∵∠EDA=30°,DE=12,
∴AE=4 ,
又∵AF=CE,∴AE=CF,
∴CA=AE+EF+CF=20 ,
又∵ ,
∴BC=60.
【解析】(1)要证明DE∥BC,可证明∠EDA=∠B,由弧DE的长度为4π,可以求得∠DOE的度数,再根据切线的性质可求得∠EDA的度数,即可证明结论.(2)根据90°的圆周角对的弦是直径,可以求得EF,的长度,借用勾股定理求得AE与CF的长度,即可得到答案.
练习册系列答案
相关题目