题目内容
【题目】如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.
(1)求证:△COD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当α为多少度时,△AOD是等腰三角形.
【答案】(1)证明见解析;(2)△AOD是直角三角形;(3)当α的度数为125 °或110 °或140 °时,△AOD是等腰三角形;
【解析】
(1)首先由旋转的定义和性质得到CO=CD,∠OCD=60°,然后根据等边三角形的判定方法即可得到△COD是等边三角形;(2)根据旋转前后对应的两个三角形全等可得△BOC≌△ADC,利用全等三角形的性质得到∠ADC=∠BOC=α=150°,再利用△COD是等边三角形得∠ODC=60°,于是可计算出∠ADO的度数,据此判断△AOD的形状;(3)需要分三种情况讨论,即①要使AO=AD,需∠AOD=∠ADO;②要使OA=OD,需∠OAD=∠ADO;③要使OD=AD,需∠OAD=∠AOD,再分别建立关于α的方程,求出α的度数;
解:
(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
∴CO=CD,∠OCD=60°,
∴△COD是等边三角形;
(2)当∠α=150°时,△AOD是直角三角形.理由如下:
∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
∴△BOC≌△ADC,
∴∠ADC=∠BOC=150°,
又∵△COD是等边三角形,
∴∠ODC=60°,
∴∠ADO=∠ADC-∠ODC=90°,
∴△AOD是直角三角形;
(3)①要使AO=AD,需∠AOD=∠ADO,
∵∠AOD=360°-110°-60°-α=190°-α,∠ADO=α-60°,
∴190°-α=α-60°,
∴α=125°;
②要使OA=OD,需∠OAD=∠ADO,
∵∠OAD=180°-(∠AOD+∠ADO)=180°-(190°-α+α-60°)=50°,
∴α-60°=50°,
∴α=110°;
③要使OD=AD,需∠OAD=∠AOD,
∵∠AOD=190°-α,∠OAD==120°-,
∴190°-α=120°-,
解得α=140°.
综上所述:当α的度数为125 °或110 °或140 °时,△AOD是等腰三角形.