题目内容

如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为
π+1
π+1
分析:根据旋转的性质作出图形,再利用勾股定理列式求出正方形的对角线,然后根据点A运动的路径线与x轴围城的面积为三个扇形的面积加上两个直角三角形的面积,列式计算即可得解.
解答:解:如图,∵正方形ABCD的边长为1,
∴对角线长:
12+12
=
2

点A运动的路径线与x轴围成的面积为:
90•π•12
360
+
90•π
2
2
360
+
90•π•12
360
+
1
2
×1×1+
1
2
×1×1
=
1
4
π+
1
2
π+
1
4
π+
1
2
+
1
2

=π+1.
故答案为:π+1.
点评:本题考查了旋转的性质,正方形的性质,扇形的面积,读懂题意并作出图形,观察出所求面积的组成部分是解题的关键,作出图形更形象直观.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网