题目内容
【题目】计算:|-2|+(π-1)0=____.
【答案】3
【解析】
根据绝对值和0次幂的性质求解即可.
原式=2+1=3.
故答案为:3.
【题目】如图1,Rt△ABC中,∠ACB=Rt∠,AC=8,BC=6,点D为AB的中点,动点P从点A出发,沿AC方向以每秒1个单位的速度向终点C运动,同时动点Q从点C出发,以每秒2个单位的速度先沿CB方向运动到点B,再沿BA方向向终点A运动,以DP,DQ为邻边构造PEQD,设点P运动的时间为t秒.
(1)当t=2时,求PD的长;
(2)如图2,当点Q运动至点B时,连结DE,求证:DE∥AP.
(3)如图3,连结CD.
①当点E恰好落在△ACD的边上时,求所有满足要求的t值;
②记运动过程中PEQD的面积为S,PEQD与△ACD的重叠部分面积为S1,当<时,请直接写出t的取值范围是 ______ .
【题目】斜边和一条_________对应相等的两个直角三角形全等(可以简写成“________________”或“HL”).
【题目】A校和B校分别库存有电脑12台和6台,现决定支援给C校10台和D校8台.已知从A校调运一台电脑到C校和D校的运费分别为40元和10元;从B校调运一台电脑到C校和D校的运费分别为30元和20元. (1)设A校运往C校的电脑为x台,请仿照下图,求总运费W(元)关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费是多少?
【题目】分解因式:3m(2x﹣y)2﹣3mn2= .
【题目】如图,已知直线AB及直线AB外一点P,按下列要求完成画图和解答:(1)连接PA,PB,用量角器画出∠APB的平分线PC,交AB于点C;
(2)过点P作PD⊥AB于点D;
(3)用刻度尺取AB中点E,连接PE;
(4)根据图形回答:点P到直线AB的距离是线段 的长度.
【题目】当x=2时,一次函数y=﹣2x+1的函数值y是( )
A.﹣3B.﹣2C.﹣1D.0
【题目】点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于( )A.3B.2C.3或5D.2或6
【题目】如图,□ABCD中,E为AD的中点,BE、CD相交于点F.
(1)求证:AB=DF
(2)若△DEF的面积为S1,△BCF的面积为S2,且S12-S2+4=0,求□ABCD的面积.