题目内容
【题目】如图所示,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a=﹣2,|b|=0,(c﹣12)2与|d﹣18|互为相反数.
(1)b=;c=;d= .
(2)若A、B两点以2个单位长度/秒的速度向右匀速运动,同时C、D两点以1个单位长度/秒的速度向左匀速运动,并设运动时间为t秒,问t为多少时,A、C两点相遇?
(3)在(2)的条件下,A、B、C、D四点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使得B与D的距离是C与D的距离的3倍?若存在,求时间t;若不存在,请说明理由.
【答案】
(1)0,12,18
(2)解:当运动时间为t秒时,点A对应的数为2t﹣2,点C对应的数为12﹣t,
根据题意得:2t﹣2=12﹣t,
解得:t= .
答:t为 时,A、C两点相遇
(3)解:假设存在,当运动时间为t秒时,点B对应的数为2t,点C对应的数为12﹣t,点D对应的数为18﹣t,
∵点B在点D的右侧,且B与D的距离是C与D的距离的3倍,
∴2t﹣(18﹣t)=3[(18﹣t)﹣(12﹣t)],
解得:t=12.
答:存在时间t,使得B与D的距离是C与D的距离的3倍,此时t的值为12
【解析】(1)∵|b|=0,(c﹣12)2与|d﹣18|互为相反数∴(c﹣12)2+|d﹣18|=0,∴b=0,c=12,d=18.
所以答案是:0;12;18;
(2)左减右加,t秒后A表示的数是-2+2t,即2t-2,类似的,C点t秒后表示的数为12-t,相遇时即两个点重合,表示同一个数,即2t﹣2=12﹣t;
(3)两点之间的距离等于表示点的数的差(大减小).
【考点精析】本题主要考查了绝对值和合并同类项的相关知识点,需要掌握正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变才能正确解答此题.