题目内容
【题目】如图1,在平面直角坐标系中,二次函数的图象与轴交于两点,点为抛物线的顶点,为线段中点.
(1)求的值;
(2)求证:;
(3)以抛物线的顶点为圆心,为半径作,点是圆上一动点,点为的中点(如图2);
①当面积最大时,求的长度;
②若点为的中点,求点运动的路径长.
【答案】(1),;(2)证明见解析;(3)①或;②.
【解析】
(1)将代入二次函数的解析式即可求解;
(2)证得是等边三角形即可证得结论;
(3)①根据题意,当或时,或面积最大,利用三角形中位线定理可求得的长,利用勾股定理可求得,即可求得答案;
②根据点M的运动轨迹是半径为2的,则的中点的运动轨迹也是圆,同样,的中点的运动轨迹也是圆,据此即可求得答案.
∵二次函数的图象与轴交于两点,
∴,
解得:,
故答案为:,;
(2)由(1)得:抛物线的解析式为,
∵二次函数的图象与轴交于两点,
∴抛物线的对称轴为:,
∴顶点的坐标为:,,
∵,
,
∴,
∴是等边三角形,
∵为线段中点,
∴;
(3)①∵为定值,当时,面积最大,如图,
由(2)得,,,
∴∥,
∵点为线段中点,点为的中点,
∴∥,,
∴三点共线,
在Rt中,,,
∴,
∴;
同理,当时,面积最大,
同理可求得:;
故答案为:或;
②如图,
∵点E的运动轨迹是,半径为,
∴的中点的运动轨迹也是圆,半径为1,
∴的中点M的运动轨迹也是圆,半径为,
∴点M运动的路径长为:.
故答案为:.
【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 10 | 10 | 9 | 8 |
(1)根据表格中的数据,可计算出甲的平均成绩是 环(直接写出结果);
(2)已知乙的平均成绩是9环,试计算其第二次测试成绩的环数;
(3)分别计算甲、乙六次测试成绩的方差,根据计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:)