题目内容
【题目】如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求证:AE=DF;
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
【答案】见解析
【解析】试题分析:(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;
(2)先根据已知中的两组平行线,可证四边形DEFA是,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证AEDF实菱形.
试题解析:(1)∵DE∥AC,∠ADE=∠DAF,
同理∠DAE=∠FDA,
∵AD=DA,
∴△ADE≌△DAF,
∴AE=DF;
(2)若AD平分∠BAC,四边形AEDF是菱形,
∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴∠DAF=∠FDA.
∴AF=DF.
∴平行四边形AEDF为菱形.
练习册系列答案
相关题目
【题目】某学习兴趣小组参加一次单元测验,成绩统计情况如下表.
分 数 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 82 | 83 | 84 | 86 | 88 | 90 | 92 |
人 数 | 1 | 1 | 5 | 4 | 3 | 2 | 3 | 1 | 1 | 1 | 2 | 3 | 1 | 2 |
(1)该兴趣小组有多少人?
(2)兴趣小组本次单元测试成绩的平均数、中位数、众数各是多少?
(3)老师打算为兴趣小组下单元考试设定一个新目标,学生达到或超过目标给予奖励,并希望小组 三分之一左右的优秀学生得到奖励,请你帮老师从平均数、中位数、众数三个数中选择一个比较恰 当的目标数;如果计划让一半左右的人都得到奖励,确定哪个数作为目标恰当些?