题目内容
【题目】如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km)(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
【答案】20.9km
【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.
详解:如图,
在Rt△BDF中,∵∠DBF=60°,BD=4km,
∴BF==8km,
∵AB=20km,
∴AF=12km,
∵∠AEB=∠BDF,∠AFE=∠BFD,
∴△AEF∽△BDF,
∴,
∴AE=6km,
在Rt△AEF中,CE=AEtan74°≈20.9km.
故这艘轮船的航行路程CE的长度是20.9km.
练习册系列答案
相关题目