题目内容

【题目】如图,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.

(1)说明:DC∥AB;
(2)求∠PFH的度数.

【答案】
(1)

∵ DC∥FP,

∴∠2=∠C.

∵ ∠1=∠2,

∴∠1=∠C,

∴DC∥AB.


(2)

∵ DC∥FP,DC∥AB,

∴∠PFE=∠FED=28,∠PFG=∠AGF=80,

∴∠EFG=∠PFE+∠PFG=28+80=108,

∵ FH平分∠EFG,

∴∠EFH=∠EFG=54,

则∠PFH=∠EFH-∠PFE=54-28=26°.


【解析】(1)根据平行线的判定定理去判断;
(2)要求∠PFH,则要求∠EFH和∠PFE,根据平行线的性质可分别求出∠EFH和∠PFE.
【考点精析】通过灵活运用角的平分线和平行线的判定,掌握从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网