题目内容
【题目】如图,∠A=90°,∠AOB=30°,AB=2,△A′OB′可以看作是由△AOB绕点O逆时针旋转60°得到的,求点A′与点B的距离
【答案】解:连接A′B,
∵△A′OB′可以看作是由△AOB绕点O逆时针旋转60°得到的,
∴△AOB≌△A′OB′,
∴OA=OA′,
∴∠A′OA=60°,
∵∠AOB=30°,AB=2,
∴∠A′OB=30°,
在Rt△AOB与Rt△A′OB中,
OA=OA′,OB=OB,
∴△AOB≌△A′OB,
∴A′B=2.
故答案为:2.
【解析】 (根据图形旋转的性质可得出,再由全等三角形的性质可得出∠A′OB′=30°,AB=2,再根据全等三角形的判定定理可得出△AOB≌△A′OB,由全等三角形的性质即可得出结论.
【考点精析】本题主要考查了旋转的性质的相关知识点,需要掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.
练习册系列答案
相关题目